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Chaotic-time-series reconstruction by the Bayesian paradigm: Right results by wrong methods

Kevin Judd*
School of Mathematics and Statistics, The University of Western Australia, Nedlands, Western Australia 6009, Australia

~Received 2 July 2002; published 19 February 2003!

Recently, papers have appeared that champion the Bayesian approach to the analysis of experimental data.
From reading these papers, the physicist could be forgiven for believing that Bayesian methods reveal deep
truths about physical systems and are the correct paradigm for the analysis of all experimental data. This paper
makes a contrary argument and is deliberately provocative. It is argued that the Bayesian approach to recon-
struction of chaotic time series is fundamentally flawed, and the apparent successes result not from any degree
of correctness of the paradigm, but by an accidental and unintended property of an algorithm. We also argue
that ~non-Bayesian! shadowing techniques provide all the information the erroneous Bayesian methods obtain,
but much more efficiently, and also provide a wealth of additional useful information.
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I. INTRODUCTION

To illustrate our point we consider a recent paper
Meyer and Christensen@1#, written in response to a paper b
McSharry and Smith@2#, concerning the problem of estima
tion of model parameters from time series of chaotic s
tems. The Meyer and Christensen paper presents the B
sian approach as the correct statistical paradigm in this
other problems, claims to provide a correct solution to t
particular problem, and makes passing criticism of physic
for developing and applyingad hoc methods. The author
apply their Bayesian methods to three problems and ob
apparently good estimates of system parameters. In this
per we argue that Meyer and Christensen make an inco
Bayesian formulation of the problem and do not solve
problem as posed by McSharry and Smith. We repeat res
of Berliner @3# that show that the correct Bayesian formu
tion of the problem necessarily fails to provide useful resu
We then argue that the apparent success of the inco
Bayesian formulation results from accidental and uninten
properties of the methods. Finally we briefly describe est
lished shadowing methods that intentionally exploit dynam
cal properties of systems~which the Bayesian methods acc
dentally exploit! to obtain all the information the Bayesia
methods obtain, but much more efficiently, and also prov
a wealth of additional useful information.

II. THE PROBLEM

The problem, in vague terms, is to determine the ‘‘c
rect’’ parameters for amodel, given the inaccurate measur
ments of asystem. It is important, at this early stage, to mak
and keep in mind the distinction between a system
model. The system is the physical experiment, the phys
reality. The model is the mathematical representation of
system. These two are not the same, although much m
ematical analysis assumes that the perfect model scena
obtainable, that is, there is a model that is a perfect repre
tation of the system~up to change of coordinates!.
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The system, in the problem that concerns us here, is
sumed to be a smooth, finite-dimensional, discrete time,
terministic, autonomous, nonlinear dynamical system@4#,
that is, the state of the system at a timetPZ can be described
completely by a pointxtPRd and the evolution of the system
state is given byxt115g(xt), for some smooth nonlinea
functiong:Rd→Rd. It is also assumed that one has a perf
model class, that is, a parametrized family of smooth fu
tions f (x,a), f :Rd3Rk→Rd, where there existsâPRk such
that g(x)5 f (x,â).

The state of the system is observed over a period of t
to obtain a finite sequence of observationsytPRd, t
50, . . . ,N. These observations are inaccurate. The erro
the observations~that is, the differenceyt2xt) is assumed to
be independent and identically distributed, that is, the e
of any one observation is random, does not depend on
other observations in any way, nor does it depend on the s
of the system. The errors are typically assumed to hav
Gaussian distributionN(0,S), whereS is the covariance of
the errors. We will assume that the errors have a probab
density r; for example, for the Gaussian distribution, th
densityr(u) is proportional to exp(2uTS21u/2).

The aim is to findâ, given the observations, or mor
correctly, the probability~density! that a particular value ofa
is the correct valueâ, given the observations and assum
distribution of observation errors.

III. THE ‘‘CORRECT’’ BAYESIAN FORMULATION

The Bayesian formulation of the problem given in th
section, and the arguments in the following section, are
sentially those of Berliner@3#. At the end of this section we
comment on the difference between this correct Bayes
formulation and the incorrect formulation of Meyer an
Christensen.

It is useful to first develop the maximum likelihood ap
proach to the problem. If the system trajectory visits a
quence of statesx5(x0 , . . . ,xN) and the corresponding ob
servations form a sequencey5(y0 , . . . ,yN), then the
probability density of the observation at timet is r(yt
2xt), and since the errors are independent, we have
©2003 The American Physical Society12-1
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probability density of the observationsy, givenx, as

p~yur,x!5)
t50

N

r~yt2xt!. ~1!

The system is deterministic, that is,xt115g(xt), which im-
plies thatx is entirely determined byx0, and so

p~yur,x!5p~yur,g,x0!5S )
t51

N

r„yt2gt~x0!…D r~y02x0!,

~2!

where xt is obtained by the iteration ofg, that is, xt
5gt(x0). Considering a model, one might construct a
quence of stateszt115 f (zt ,a), and write

p~yur, f ,a,z0!5S )
t51

N

r„yt2 f t~z0 ,a!…D r~y02z0!, ~3!

wherea and z0 are unknowns to be determined. Howev
this misses an important fact that the distribution ofz0 is not
an unknown, becausey0 is known and the observation erro
distribution is known. So one can eliminate the depende
on z0 and write

p~yur, f ,a!5E p~y1 , . . . ,yNu f ,a,w!p~wuy0!dw ~4!

5E S )
t51

N

r„yt2 f t~w,a!…D r~y02w!dw. ~5!

One therefore obtains the likelihood functionL(aur, f ,y)
5p(yur, f ,a). A maximum likelihood estimate of the param
etersa maximizes the likelihood function.

The Bayesian approach is developed by considering

p~y1 , . . . ,yNur, f ,a,w!5)
t51

N

r„yt2 f t~w,a!…, ~6!

with the two unknownsa andw. The joint posterior density
of the unknownsp(a,wu f ,y) is proportional to the likelihood
~6! multiplied by the priors of the unknownspa(a) and
pw(w), that is,

p~a,wur, f ,y!}S )
t51

N

r„yt2 f t~w,a!…D pw~w!pa~a!. ~7!

An estimate of the probability density ofa is obtained from
Eq. ~7! by generating random samples ofw anda according
to prior densitiespa(a) andpw(w). This Monte Carlo Mar-
kov chain computation of the distribution ofa would seem to
be relatively trivial, as there are only two unknownsa andw,
but we will see in Sec. IV that this is not the case.

The prior densities are often specifiedad hoc, the argu-
ment being that the posterior density does not depend c
02621
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cally on the prior, although we shall shortly see that it us
ally will in this case. Observe that an informed prior dens
for w is pw(w)5r(y02w). Also note the fact that when
using an uninformative uniform prior density fora, the pos-
terior density function of parameters,p(aur, f ,y)
5*p(a,wur, f ,y)pw(w)dw, is identical ~up to normaliza-
tion! to the likelihoodL(aur, f ,y) in Eq. ~5!.

A. Comments

The preceding discussion provides the correct Bayes
formulation of the problem@3#. The formulation of Meyer
and Christensen is not at all like the one just discussed. T
formulation is different, and incorrect, because they assum
stochastic system, or model, or both; it is not entirely cle
which. Meyer and Christensen change the problem to
their method. They assert that ‘‘a proper statistical paradi
requires treating the system states as stochastic instea
deterministic;’’ this is false as the preceding discussion de
onstrates. Meyer and Christensen give onlyad hocjustifica-
tion for treating the deterministic problem like a stochas
problem, for example, that the stochastic formulation is m
‘‘realistic,’’ and that the deterministic case can be treated
just ‘‘small’’ dynamic noise. Such justifications are not su
ficient on a technical level, and are disputable even on
informal level, because, for example, the reality is that ma
physical systems are indistinguishable from determinis
systems, there is no apparent small dynamic noise, and w
is often attributed as such is in fact model error.~One could
even argue that when a stochastic effect appears to
present, such as, say,thermal noise, it is just complex high-
dimensional deterministic dynamics and is therefore rea
model error.! On the technical level, although the determi
istic problem is a subcase of the stochastic problem, in
sense of the limit as stochastic perturbations go to zero
does not follow that a solution to a stochastic problem p
vides a solution to the deterministic problem, because
solution spaces are quite different.

Meyer and Christensen appear to presume that t
method is correct because the method appears to give co
estimates in the examples. In the following section we de
onstrate that the correctdeterministic formulationfails to
provide useful estimates, and in Sec. V we explain why
incorrect stochastic formulationof Meyer and Christensen
apparently gives correct results.

IV. FAILURE OF CORRECT BAYESIAN SOLUTION

Having developed in Sec. III the correct Bayesian a
proach to the problem, we demonstrate that this correct
proach almost always fails. Our argument is essentially t
of Berliner @3#. The reason for the failure is the very low
probability of sampling near the true initial condition, that
the need for an impossibly narrow and well-placed prior d
sity.

Consider a very simple case of a ten-point trajectory
the logistic equationg(x)512âx2 with â51.85, x050.3,
observations with Gaussian errors of standard deviations
50.1, and the perfect model classf (x,a)512ax2. Figure 1
2-2
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shows how the posterior probability density~likelihood! of
the parametera varies for various prior sampling distribu
tions pw(w) that are uniform, centered on the true initi
condition, and have different diameters. Observe that un
one samples very close to the correct initial condition, in t
case two orders of magnitude less spread than the obs
tion error r, the posterior density does not reveal the tr
parameter value. The reason is simply that unless
sampled initial condition is close to the true initial conditio
the trajectory will diverge too rapidly from the true trajecto
and give a trajectory too far from the observations.

If the trajectory is longer than ten points, the initial co
dition has to be sampled even more closely; for exam
once the trajectory exceeds about 70 points, the samp
accuracy must be better than 10217, the machine precision o
the computer we used. Hence the posterior density of
initial condition is exceedingly narrow, and unless the pr
density also reflects this, the posterior density of the par
etera is unreliable.

We conclude that in systems with sensitive dependenc
initial conditions ~chaotic!, the posterior density of param
eters will be unreliable, unless the initial condition prior de
sity is narrow and close to the true initial condition. How
ever, the most informed prior is the sampling errorpw(w)
5r(y02w). This means a Bayesian approach will requ
an exponentially large Monte Carlo sampling as the traj
tory length increases in order to have any chance of samp
near the correct initial condition.

FIG. 1. Variation of the posterior density of parametera for
different prior densities onx0 for a ten-point trajectory of the logis

tic equation g(x)512âx2 with â51.85, x050.3, observations
with Gaussian errors of standard deviations50.1, and the perfec
model classf (x,a)512ax2. The prior density forx0 is uniform,
centered on the true value 0.3 with radii varying from 1022 down to
1024 as indicated. The logarithm of the likelihood is the natu
logarithm. The densities are calculated from a 10 000-mem
Monte Carlo sample. Observe that unless the prior density is v
narrow ~two orders of magnitude less than the observational er
equivalent to almost knowing the initial condition!, the true param-
eter value is not revealed. Alternatively, a prohibitively large sam
is required to obtain a correct posterior density.
02621
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V. WHY IS A WRONG METHOD APPARENTLY RIGHT?

We now reach an interesting juncture. On one ha
Meyer and Christensen use an incorrect stochastic Baye
formulation of the problem that appears to provide accur
estimates of the parameters for a number of simple examp
On the other hand, the correct deterministic Bayesian form
lation fails, in general, and certainly for the same examp
Should one then use the wrong formulation because it
pears to work? The answer to such questions should alw
be no, it is better to understand what the Bayesian black
is doing and why it should appear to work. We argue that
success of the incorrect stochastic Bayesian formulatio
the fortuitous consequence of Bayesian sampling, bein
~very inefficient! method of finding shadowing pseudo
orbits.

There are several variant definitions of the concepts
pseudo-orbits and shadowing, very broad definitions are
ficient here. Pseudo-orbits are sequences of states of a m
or system that are close to being trajectories, that is, fo
system with dynamics given byg:Rd→Rd, a sequence of
statesxtPRd, t50, . . . ,N, should have the property that th
indeterminism L(x)5( i 51

N ixt2g(xt21)i2 should be small.
Observe thatL(x)50 if the sequence of states is a trajecto
A sequence of statesxtPRd, t50, . . . ,N, is said toshadow
another sequence of statesytPRd, t50, . . . ,N, if ( i 50

N iyt
2xti2 is small or minimal in some sense. Shadowing orb
and pseudo-orbits play an important role in the study of n
linear dynamical systems and the study of imperfect mod

Consider the shadowing of a trajectory of a systemg(x)
5 f (x,â) by trajectories and pseudo-orbits of a smoo
model family f (x,a). It can be shown that ifaÞâ, then the
model cannot have trajectories that shadow a trajectory
the system for arbitrary long times except under very st
conditions. In general, the furthera is from â, the shorter the
period of time is for which shadowing of system trajectori
by model trajectories can be sustained.

We note the following jumble of facts that will be used
explain the apparent success of the stochastic Bayesian
mulation. In general, the closera is to â, the easier it is to
find trajectories of the model that shadow a short sequenc
the trajectory of the system, or a short sequence of obse
tions of a trajectory. We note that the observations of
trajectory of a system form a pseudo-orbit of the syste
with the indeterminism dependent on the observation e
distribution. A solution of the stochastic equationzt11
5 f (zt ,a)1n t , wheren t is N(0,t2), is a pseudo-orbit of the
deterministic model. By construction, whent is small
enough, these pseudo-orbits shadow trajectories of the m
for short periods. Observe that if pseudo-orbits obtain
from the stochastic equation shadow segments of trajecto
of the model, then there will exist pseudo-orbits that a
shadow the segments of a trajectory of the system and
pseudo-orbit of observations of the trajectory. It is easier
find such simultaneous shadowing pseudo-orbits whena is
close toâ.

The preceding facts work together to explain the succ
of the incorrect stochastic Bayesian formulation. The ar
ment is this: The stochastic equations generate pseudo-o
The closera is to the trueâ, the greater is the chance th
segments of these pseudo-orbits shadow segments of th
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servations. The better a pseudo-orbits shadows the obs
tions ~that is, the longer and closer it shadows!, the higher its
posterior density probability. Hence, the simulated poste
density probability ought to take a maximum whena5â,
because here there is the best chance of generating ps
orbits that partially shadow.

We observe that the sampling approach does not set o
find shadowing pseudo-orbits—it is quite inefficient at doi
so—it just accidentally finds pseudo-orbits that partia
shadow, which score highly in the posterior density, a
hence reveal the correct parameter value.

Consequently, the stochastic Bayesian formulation is s
cessful for estimating parameters of deterministic syste
not because it is the correct paradigm~it is an incorrect and
irrelevant paradigm in this context!, but because it fortu-
itously exploits shadowing properties of nonlinear dynami
systems.

VI. SHADOWING METHODS ARE A BETTER
ALTERNATIVE

If the stochastic Bayesian formulation only fortuitous
exploits shadowing properties of nonlinear dynamical s
tems, then it is appropriate to ask whether a direct appro
that deliberately exploits shadowing properties is availa
and better. Shadowing methods do exist and we now a
that they can provide all the information Bayesian sampl
provides, at considerably less cost, and provide closely s
owing pseudo-orbits that give a wealth of additional imp
tant information about the system dynamics and the mo
class.

Methods for finding shadowing pseudo-orbits have
isted for some time~Davies@5#, Farmer and Sidorowich@6#,
Grebogiet al @7#, Hammel@8#, Kostelich and Schreiber@9#,
Ridout and Judd@10#!. Only a brief description and illustra
tion is given here, for details see Ridout and Judd and c
tions therein.

One method for finding shadowing trajectories is the g
dient descent method that takes an initial pseudo-orbx
5y, wherey is the sequence of observations, then ma
simultaneous adjustments of all the states of the pseudo-
x so as to move down the gradient of the indetermini
function L(x). One achieves this by solving the differenti
equation

d

dt
x~t!52

]

]x
L„x~t!…, x~0!5y, ~8!

and finding the shadowing orbit from lim
t→`

x(t). In simple

cases it is possible to solve the differential equation usin
stiff integration routine. This algorithm has provable conv
gence properties and other benefits, for details see Ri
and Judd@10# and Judd@11#.

We illustrate shadowing methods with the logistic e
ample again. It should be noted that the gradient des
method used here does not depend on the covariance o
noise, so the problem of finding shadowing pseudo-or
involves only model parameters, with the noise variance o
02621
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entering into the computation of the likelihood of a give
shadowing pseudo-orbit. In this example we consider a 1

point trajectory of the logistic equationg(x)512âx2 with
â51.85,x050.3, with Gaussian errors of standard deviati
s50.1, and the perfect model classf (x,a)512ax2. Shad-
owing pseudo-orbits were obtained by integrating the
scent equation~8! until t51000, which is not always suffi-
cient to obtain a shadowing trajectory when the parametea
is far from the true value.

Figure 2 shows the variation of various quantities with t
parametera in this shadowing pseudo-orbit experiment. O
serve from panel~b! that for half of the parameter values i
the range shown, the gradient descent algorithm has c
verged to a shadowingtrajectory to within machine preci-
sion. Observe from panel~c! that the pseudo-orbits obtaine
shadow the true trajectory very closely. In fact, when t
initial x0 of one of the shadowing pseudo-orbits is iterate
the trajectory it provides shadows the true trajectory nea
as closely as the pseudo-orbit itself for between 50 and
steps, which is close to the limits of machine precision. T
likelihood shown in panel~d! of the parameter valuea, given
the shadowing pseudo-orbit and observations, is consis
with the stochastic Bayesian formulation calculations
Meyer and Christensen. The position of the maximum lik
lihood value of the parameter varies with the realization
the noise, as should be expected, and the variation is sim
to that obtained by the stochastic Bayesian formulation c
culations.

VII. CONCLUSIONS AND DISCUSSION

Recent papers have presented the Bayesian paradig
the one correct method of data analysis, and presented
tain algorithms as one-size-fits-all general purpose al
rithms. One should have been wary of such claims becau
is just too good to be true. We have argued that at least in
application to parameter estimation from chaotic time se
this is demonstrably false, that is, the correct Bayesian
malism of the problem provides no useful information
practice. We have argued that the apparent success
clearly inapplicable stochastic formulation is the cons
quence of subtle properties of chaotic systems, and is
evidence of some deep truth of the paradigm.

This is not to say that the Bayesian paradigm is not u
ful; we merely point out that there are situations where it
not, and that the physicist is right in developing more n
rowly applicable methodologies that are more efficient a
useful in situations where the Bayesian paradigm fails.

Physicists should be wary of mathematical and statist
methods presented as deep truths, just as they are us
insisting on experimental verification of physical theories
is harder to apply such tests to the mathematical and st
tical methods they are encouraged to use. In many cases
computer experiments used to illustrate the methods are
alized and are not verification. At the very least it is impo
tant to probe the assumptions behind an impressive the
and treat results as questionable when obtained in situat
where assumptions do not hold. This is the case in the
2-4
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FIG. 2. Variation of various quantities with the parametera for a 100-point trajectory of the logistic equationg(x)512âx2 with â
51.85, x050.3, observations with Gaussian errors of standard deviations50.1, and the perfect model classf (x,a)512ax2. ~a! Shows
the variation of the indeterminism of the observation pseudo-orbit with the model.~b! Shows the variation of the indeterminism of th

shadowing pseudo-orbit obtained by gradient descent from the observations given a model.~c! Shows the distanceA( t50
N i x̂t2xti2 between

the true trajectory of the systemx̂t and the shadowing pseudo-orbitxt . ~d! Shows the likelihood of the shadowing pseudo-orbit, given
observations, assuming Gaussian errors of standard deviations50.1.
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chastic formulation of the essentially deterministic proble
discussed here, but there are deeper problems too. From
outset we have restricted attention to theperfect model class
scenario. It is questionable whether such a situation can e
be realized, and this is a topic of active discussion am
philosophers of science. The more likely scenario is theim-
perfect model class scenario, where there is no paramete
value that gives a correct model. Indeed, the determini
imperfect model scenario is arguably a more accurate m
of most situations than the ‘‘realistic’’ stochastic model a
02621
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serted by Meyer and Christensen; what is often attributed
noise is really model error.

Acceptance of the imperfect model class scenario le
to a number of profound consequences. In the curr
context we merely state, for the time being, that the Bayes
posterior probability, the probability that a parameter va
is correct given the model class and observations, is usu
a meaningless concept if the model class is imperfect. Go
into this in any more detail takes us beyond the scope
this paper, but we intend to take up the theme in the futu
ere
t is
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