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Chaotic-time-series reconstruction by the Bayesian paradigm: Right results by wrong methods
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Recently, papers have appeared that champion the Bayesian approach to the analysis of experimental data.
From reading these papers, the physicist could be forgiven for believing that Bayesian methods reveal deep
truths about physical systems and are the correct paradigm for the analysis of all experimental data. This paper
makes a contrary argument and is deliberately provocative. It is argued that the Bayesian approach to recon-
struction of chaotic time series is fundamentally flawed, and the apparent successes result not from any degree
of correctness of the paradigm, but by an accidental and unintended property of an algorithm. We also argue
that (non-Bayesiapshadowing techniques provide all the information the erroneous Bayesian methods obtain,
but much more efficiently, and also provide a wealth of additional useful information.
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[. INTRODUCTION The system, in the problem that concerns us here, is as-
sumed to be a smooth, finite-dimensional, discrete time, de-
To illustrate our point we consider a recent paper byterministic, autonomous, nonlinear dynamical systgfh
Meyer and Christensdr], written in response to a paper by that is, the state of the system at a titeeZ can be described
McSharry and Smitti2], concerning the problem of estima- completely by a poink, e RY and the evolution of the system
tion of model parameters from time series of chaotic sysstate is given byx;.;=9(x;), for some smooth nonlinear
tems. The Meyer and Christensen paper presents the Baykmctiong:RY—RY. It is also assumed that one has a perfect
sian approach as the correct statistical paradigm in this anghodel class, that is, a parametrized family of smooth func-
other problems, claims to provide a correct solution to thistjons f(x,a), f:R¥x R*—RY, where there existae R¥ such
particular problem, and makes passing criticism of physicist§hatg(x) —f(x,3)
for developing and applyingd hoc methods. The authors PR
apply their Bayesian methods to three problems and obtai{b
apparently good estimates of system parameters. In this pa-
per we argue that Meyer and Christensen make an incorre%e’o'
Bayesian formulation of the problem and do not solve the}3
I

problem as posed by McSharry and Smith. We repeat resu of any one observation is random, does not depend on the

o e o mess sy o i ot e QT GESEIVBON ) any Ry, r Gogs depond on e St
P y P ;)én the system. The errors are typically assumed to have a

The state of the system is observed over a period of time
obtain a finite sequence of observatiogse RY, t

.. N. These observations are inaccurate. The error in
bservationghat is, the differencg,—x;) is assumed to

e independent and identically distributed, that is, the error

We thgn argue that the apparent success of the_lncorre aussian distributioN(0,%), wheres, is the covariance of
Bayesian formulation results from accidental and unintende

. : . . e errors. We will assume that the errors have a probability
properties of the methods. Finally we briefly describe eStapaensityp; for example, for the Gaussian distribution, the

lished shadowing methods that intentionally exploit dynami- . . ; Tw_1

cal properties ofgsysteMWhich the Bayesiaz mgthodsyacci- densityp (u) .'S proportlona! to exptu’ u/2)'.

dentally exploil to obtain all the information the Bayesian ~ 1he aim is to finda, given the observations, or more

methods obtain, but much more efficiently, and also providéorrectly, the probabilitydensity that a particular value af

a wealth of additional useful information. is the correct valua, given the observations and assumed
distribution of observation errors.

Il. THE PROBLEM

. . . Ill. THE “CORRECT” BAYESIAN FORMULATION
The problem, in vague terms, is to determine the “cor-

rect” parameters for anode] given the inaccurate measure-  The Bayesian formulation of the problem given in this
ments of asystemlt is important, at this early stage, to make section, and the arguments in the following section, are es-
and keep in mind the distinction between a system andentially those of Berlinef3]. At the end of this section we
model. The system is the physical experiment, the physicatomment on the difference between this correct Bayesian
reality. The model is the mathematical representation of théormulation and the incorrect formulation of Meyer and
system. These two are not the same, although much matiGhristensen.

ematical analysis assumes that the perfect model scenario is It is useful to first develop the maximum likelihood ap-
obtainable, that is, there is a model that is a perfect represeproach to the problem. If the system trajectory visits a se-

tation of the systentup to change of coordinates quence of states=(Xq, . .. Xy) and the corresponding ob-
servations form a sequence=(yq, ...,yn), then the
probability density of the observation at tinteis p(y;
*Electronic address: Kevin.Judd@uwa.edu.au —X%;), and since the errors are independent, we have the
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probability density of the observatiows givenx, as

N
|o<y|p,x>=t:H0 p(Yr—Xo). (1)

The system is deterministic, that s, 1=9(X;), which im-
plies thatx is entirely determined by, and so

p(y|p,x)=p(Y|p,9.X0) = (H p(yi—9'(Xo) ))P(YO_XO),
(2

where x; is obtained by the iteration ofj, that is, x;
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cally on the prior, although we shall shortly see that it usu-
ally will in this case. Observe that an informed prior density
for w is py(w)=p(y,—w). Also note the fact that when
using an uninformative uniform prior density far the pos-
terior density function of parameters,p(alp,f,y)
=[p(a,w|p,f,y)pu(W)dw, is identical (up to normaliza-
tion) to the likelihoodL (alp,f,y) in Eq. (5).

A. Comments

The preceding discussion provides the correct Bayesian
formulation of the problenj3]. The formulation of Meyer
and Christensen is not at all like the one just discussed. Their
formulation is different, and incorrect, because they assume a

=g'(xo). Considering a model, one might construct a se-stochastic system, or model, or both; it is not entirely clear

guence of states ,;=f(z,a), and write

p(ylp.f.a,zp)= (H p(Yi— Zo,a))) (Yo—20), (3

wherea and z, are unknowns to be determined. However,

this misses an important fact that the distributioregfs not

an unknown, becausg, is known and the observation error .
distribution is known. So one can eliminate the dependency;,

on zy and write

p(ylp,f,a)=f p(y1, ... .ynlIf.aw)p(wlyg)dw (4

N
=J (11;[1 p(yt_ft(w’a)))P(YO_W)dW. (5)

One therefore obtains the likelihood functidr(alp,f,y)
=p(y|p.f,a). Amaximum likelihood estimate of the param-
etersa maximizes the likelihood function.

The Bayesian approach is developed by considering

N

p(ylv s vyN|p!f1a1W):Bl P(Yt_ft(W,a)), (6)

with the two unknowns andw. The joint posterior density
of the unknowns(a,w|f,y) is proportional to the likelihood
(6) multiplied by the priors of the unknownp,(a) and
pw(w), that is,

N
IO(a,Wlp,f.y)OC(tl_[1 p(Yi— f‘(w,a))) Pw(W)pa(a). (7)

An estimate of the probability density afis obtained from
Eq. (7) by generating random sampleswfanda according
to prior densitieg,(a) andp,,(w). This Monte Carlo Mar-
kov chain computation of the distribution afwould seem to
be relatively trivial, as there are only two unknowanandw,
but we will see in Sec. IV that this is not the case.

The prior densities are often specifiad hog the argu-

which. Meyer and Christensen change the problem to suit
their method. They assert that “a proper statistical paradigm
requires treating the system states as stochastic instead of
deterministic;” this is false as the preceding discussion dem-
onstrates. Meyer and Christensen give amdlyhocjustifica-

tion for treating the deterministic problem like a stochastic
problem, for example, that the stochastic formulation is more
“realistic,” and that the deterministic case can be treated as
st “small” dynamic noise. Such justifications are not suf-
icient on a technical level, and are disputable even on an
informal level, because, for example, the reality is that many
physical systems are indistinguishable from deterministic
systems, there is no apparent small dynamic noise, and what
is often attributed as such is in fact model erf@ne could
even argue that when a stochastic effect appears to be
present, such as, sapermal noiseit is just complex high-
dimensional deterministic dynamics and is therefore really
model erron. On the technical level, although the determin-
istic problem is a subcase of the stochastic problem, in the
sense of the limit as stochastic perturbations go to zero, it
does not follow that a solution to a stochastic problem pro-
vides a solution to the deterministic problem, because the
solution spaces are quite different.

Meyer and Christensen appear to presume that their
method is correct because the method appears to give correct
estimates in the examples. In the following section we dem-
onstrate that the corredeterministic formulationfails to
provide useful estimates, and in Sec. V we explain why the
incorrect stochastic formulatiorof Meyer and Christensen
apparently gives correct results.

IV. FAILURE OF CORRECT BAYESIAN SOLUTION

Having developed in Sec. lll the correct Bayesian ap-
proach to the problem, we demonstrate that this correct ap-
proach almost always fails. Our argument is essentially that
of Berliner [3]. The reason for the failure is the very low
probability of sampling near the true initial condition, that is,
the need for an impossibly narrow and well-placed prior den-
sity.

Consider a very simple case of a ten point trajectory of
the logistic equatiorg(x)=1— ax? with a=1.85, Xo=0.3,
observations with Gaussian errors of standard deviadion

ment being that the posterior density does not depend criti=0.1, and the perfect model claiis,a) =1—ax?. Figure 1
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. V. WHY IS A WRONG METHOD APPARENTLY RIGHT?

L e ma ) T N T 1x 10:3——

.1 zgﬁ;g}?}ﬁ? | We now reach an interesting juncture. On one hand,
1x1074 Meyer and Christensen use an incorrect stochastic Bayesian

ni L . formulation of the problem that appears to provide accurate

estimates of the parameters for a number of simple examples.
On the other hand, the correct deterministic Bayesian formu-
lation fails, in general, and certainly for the same examples.
Should one then use the wrong formulation because it ap-
pears to work? The answer to such questions should always
be no, it is better to understand what the Bayesian black box
is doing and why it should appear to work. We argue that the
success of the incorrect stochastic Bayesian formulation is
the fortuitous consequence of Bayesian sampling, being a
Tig o bl nme g e e e | % el B (very inefficieny method of finding shadowing pseudo-
1.74 1.76 1.78 18 1.82 1.84 1.86 1.88 1.9 1.92 194 1.96 OI‘bItS
P There are several variant definitions of the concepts of

FIG. 1. Variation of the posterior density of parametefor ~ PSeudo-orbits and shadowing, very broad definitions are suf-
different prior densities o, for a ten-point trajectory of the logis- ficient here. Pseudo-orbits are sequences of states of a model
or system that are close to being trajectories, that is, for a
system WitZl dynamics given bg:R—RY, a sequence of
model classf(x,a)=1—ax2. The prior density forxg is uniform, _StateS(‘ E.R.  1=0,.. ',’\,N’ should havezthe property that the
centered on the true value 0.3 with radii varying from 1@own to  INdeterminism ILX):_Ei:lHXt_g(Xt*l)|| should be small.
10"* as indicated. The logarithm of the likelihood is the natural OPServe thak (x) =0 if thed sequence of states is a trajectory.
logarithm. The densities are calculated from a 10000-membef* S€quence of stateg e RY, t=0d, -+ N, is said tosnadow
Monte Carlo sample. Observe that unless the prior density is vernother sequence of statgs= R%, t=0, ... N, if Zi_g]y;
narrow (two orders of magnitude less than the observational error;,~ x|? is small or minimal in some sense. Shadowing orbits
equivalent to almost knowing the initial conditiprihe true param-  and pseudo-orbits play an important role in the study of non-
eter value is not revealed. Alternatively, a prohibitively large samplelinear dynamical systems and the study of imperfect models.
is required to obtain a correct posterior density. Corlsider the shadowing of a trajectory of a sys@(r)
=f(x,a) by trajectories and pseudo-orbits of a smooth

shows how the posterior probability densifikelinood) of ~ model familyf(x,a). It can be shown that ii+#a, then the
the parameten varies for various prior sampling distribu- model cannot have trajectories that shadow a trajectory of

tions p,,(w) that are uniform, centered on the true initial the system for arbitrary long times except under very strict

condition, and have different diameters. Observe that unles('\soﬂd'ctj'oﬁir:]n gi]e?err%vl'htihﬁ fuk:thdanviilr‘{omfa, thte r.:,]ht?rter ih‘:'i
one samples very close to the correct initial condition, in thi eriod o eisto ch shadowing of system trajectories

. Ely model trajectories can be sustained.
case two orders of magnitude less spread than the observar e pote the following jumble of facts that will be used to

tion error p, the posterior density does not reveal the truegyp|ain the apparent success of the stochastic Bayesian for-
parametgr .\./alue. T_he reason 1s simply .thgt unles§ thﬁ'wulation. In general, the closeris to a, the easier it is to
sampled initial condition is close to the true initial condition, ¢4 trajectories of the model that shadow a short sequence of
the trajectory will diverge too rapidly from the true trajectory the trajectory of the system, or a short sequence of observa-
and give a trajectory too far from the observations. tions of a trajectory. We note that the observations of the
If the trajectory is longer than ten points, the initial con- trajectory of a system form a pseudo-orbit of the system,
dition has to be sampled even more closely; for examplevith the indeterminism dependent on the observation error
once the trajectory exceeds about 70 points, the samplingistribution. A solution of the stochastic equatian, ;
accuracy must be better than 18, the machine precision of = f(z,8)+ v, wherew, is N(0,7%), is a pseudo-orbit of the

the computer we used. Hence the posterior density of th@eterministic model. By construction, when is small
initial condition is exceedingly narrow, and unless the prior€nPugh, these pseudo-orbits shadow trajectories of the model
for short periods. Observe that if pseudo-orbits obtained

ity al fl his, th [ ity of th . . ; .
densﬂy aiso reflects this, the posterior density of the ParaME om the stochastic equation shadow segments of trajectories
etera is unreliable.

. . . of the model, then there will exist pseudo-orbits that also
_ We conclude that in systems with sensitive dependence og,5 4oy the segments of a trajectory of the system and the
initial conditions (chaotig, the posterior density of param- pseydo-orbit of observations of the trajectory. It is easier to
eters will be unreliable, unless the initial condition prior den-find such simultaneous shadowing pseudo-orbits wés

sity is narrow and close to the true initial condition. How- ;|ose toa.

ever, the most informed prior is the sampling erm(w)  The preceding facts work together to explain the success
=p(Yo—Ww). This means a Bayesian approach will requireof the incorrect stochastic Bayesian formulation. The argu-
an exponentially large Monte Carlo sampling as the trajecment is this: The stochastic equations generate pseudo-orbits.
tory length increases in order to have any chance of samplinghe closera is to the truea, the greater is the chance that
near the correct initial condition. segments of these pseudo-orbits shadow segments of the ob-

loglikelihood (x10°)

tic equationg(x)=1—ax? with a=1.85, x,=0.3, observations
with Gaussian errors of standard deviatior 0.1, and the perfect
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servations. The better a pseudo-orbits shadows the observantering into the computation of the likelihood of a given
tions(that is, the longer and closer it shadowse higher its  shadowing pseudo-orbit. In this example we consider a 100-
posterior density probability. Hence, the simulated pofter'oboint trajectory of the logistic equatiog(x)=1—ax2 with

density probability ought to take a maximum whera,  3-1 g5 x,=0.3, with Gaussian errors of standard deviation

because here there is the best chance of generating pseudp= 1 and the perfect model clag,a)=1—ax2. Shad-

orbits that partially shadow. owing pseudo-orbits were obtained by integrating the de-
We observe that the sampling approach does not set out {Q.an¢ equatior8) until 7= 1000, which is not always suffi-

find shadowing pseudo-orbits—it is quite inefficient at doing cjent to obtain a shadowing trajectory when the parameter
so—it just accidentally finds pseudo-orbits that partiallyis tar from the true value.
shadow, which score highly in the posterior density, and  Eigyre 2 shows the variation of various quantities with the
hence reveal the correct parameter value. o parametea in this shadowing pseudo-orbit experiment. Ob-
Consequently, the stochastic Bayesian formulation is sUCsarve from panelb) that for half of the parameter values in
cessful for estimating parameters of deterministic systemspq range shown, the gradient descent algorithm has con-
not because it is the correct paradigiiis an incorrect and verged to a shadowingajectory to within machine preci-
irrelevant paradigm in this contextbut because it fortu- ¢ion Opserve from panét) that the pseudo-orbits obtained
itously exploits shadowing properties of nonlinear dynamicalgp3qow the true trajectory very closely. In fact, when the
systems. initial x, of one of the shadowing pseudo-orbits is iterated,
the trajectory it provides shadows the true trajectory nearly
VI. SHADOWING METHODS ARE A BETTER as closely as the pseudo-orbit itself for between 50 and 60
ALTERNATIVE steps, which is close to the limits of machine precision. The
likelihood shown in paneld) of the parameter valug given

I t_he stochaspc Bayesw}n formulat!on only fortgltously the shadowing pseudo-orbit and observations, is consistent
exploits shadowing properties of nonlinear dynamical sys; ith the stochastic Bayesian formulation calculations of

tems, th_en itis approp_riate to ask_ whether a_dire_ct approac eyer and Christensen. The position of the maximum like-
that deliberately exploits shadowing properties is availablgy, ;) ajye of the parameter varies with the realization of

and better. Shadowing methods do exist and we now arg e noise, as should be expected, and the variation is similar

that Fhey can proy|de all the information Baye3|an samplin o that obtained by the stochastic Bayesian formulation cal-
provides, at considerably less cost, and provide closely sha

. . . - : ulations.
owing pseudo-orbits that give a wealth of additional impor-
tant information about the system dynamics and the model

class.
Methods for finding shadowing pseudo-orbits have ex- VII. CONCLUSIONS AND DISCUSSION
isted for some timéDavies[5], Farmer and Sidorowicf6], Recent papers have presented the Bayesian paradigm as

Grebogiet al [7], Hammel[8], Kostelich and Schreibd®],  the one correct method of data analysis, and presented cer-
Ridout and Judd10]). Only a brief description and illustra- tain algorithms as one-size-fits-all general purpose algo-
tion is given here, for details see Ridout and Judd and citarithms. One should have been wary of such claims because it
tions therein. is just too good to be true. We have argued that at least in the
One method for finding shadowing trajectories is the gragpplication to parameter estimation from chaotic time series
dient descent method that takes an initial pseudo-otbit thjs is demonstrably false, that is, the correct Bayesian for-
=y, wherey is the sequence of observations, then makesnalism of the problem provides no useful information in
simultaneous adjustments of all the states of the pseudo-orljiactice. We have argued that the apparent success of a
X so as to move down the gradient of the indeterminisnclearly inapplicable stochastic formulation is the conse-
functionL(x). One achieves this by solving the differential quence of subtle properties of chaotic systems, and is not
equation evidence of some deep truth of the paradigm.
This is not to say that the Bayesian paradigm is not use-
d 9 ful; we merely point out that there are situations where it is
—X(1)=— —=LX(7)), x(0)=y, (8) not, and that the physicist is right in developing more nar-
dr X rowly applicable methodologies that are more efficient and
useful in situations where the Bayesian paradigm fails.
Physicists should be wary of mathematical and statistical
cases it is possible to solve the differential equation using anethods presented as deep truths, just as they are used to
stiff integration routine. This algorithm has provable conver-insisting on experimental verification of physical theories. It
gence properties and other benefits, for details see Ridoig harder to apply such tests to the mathematical and statis-
and Judd10] and Judd11]. tical methods they are encouraged to use. In many cases, the
We llustrate shadowing methods with the logistic ex- computer experiments used to illustrate the methods are ide-
ample again. It should be noted that the gradient descemtlized and are not verification. At the very least it is impor-
method used here does not depend on the covariance of ti@nt to probe the assumptions behind an impressive theory,
noise, so the problem of finding shadowing pseudo-orbit@nd treat results as questionable when obtained in situations
involves only model parameters, with the noise variance onlyvhere assumptions do not hold. This is the case in the sto-

and finding the shadowing orbit from Iirrgwx(r). In simple
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FIG. 2. Variation of various quantities with the parametefor a 100-point trajectory of the logistic equatigrix) = 1—ax? with a
=1.85, x,=0.3, observations with Gaussian errors of standard deviatie0.1, and the perfect model clabéx,a)=1—ax?. (a) Shows
the variation of the indeterminism of the observation pseudo-orbit with the m@meShows the variation of the indeterminism of the
shadowing pseudo-orbit obtained by gradient descent from the observations given a(m@&ledws the distanc E[\‘:0||§<t—xt|\2 between

the true trajectory of the systefn and the shadowing pseudo-orkjt. (d) Shows the likelihood of the shadowing pseudo-orbit, given the
observations, assuming Gaussian errors of standard deviatidhl.

chastic formulation of the essentially deterministic problemserted by Meyer and Christensen; what is often attributed to
discussed here, but there are deeper problems too. From theise is really model error.

outset we have restricted attention to pexfect model class Acceptance of the imperfect model class scenario leads
scenario It is questionable whether such a situation can eveto a number of profound consequences. In the current
be realized, and this is a topic of active discussion amongontext we merely state, for the time being, that the Bayesian
philosophers of science. The more likely scenario isithhe  posterior probability, the probability that a parameter value

perfect model class scenarizvhere there is no parameter is correct given the model class and observations, is usually
value that gives a correct model. Indeed, the deterministi@ meaningless concept if the model class is imperfect. Going
imperfect model scenario is arguably a more accurate modahto this in any more detail takes us beyond the scope of
of most situations than the “realistic” stochastic model as-this paper, but we intend to take up the theme in the future.
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